
On the Utility of Threads for Data Parallel Programming
�

Thomas Fahringery Matthew Hainesz Piyush Mehrotraz

yInstitute for Software Technology and Parallel Systems

University of Vienna

Liechtensteinstrasse 22, A-1092, Vienna, Austria

zICASE

NASA Langley Research Center, Mail Stop 132C

Hampton, VA 23681-0001

Abstract

Threads provide a useful programming model for asynchronous behavior because of their abil-

ity to encapsulate units of work that can then be scheduled for execution at runtime, based

on the dynamic state of a system. Recently, the threaded model has been applied to the do-

main of data parallel scienti�c codes, and initial reports indicate that the threaded model can

produce performance gains over non-threaded approaches, primarily through the use of overlap-

ping useful computation with communication latency. However, overlapping computation with

communication is possible without the bene�t of threads if the communication system supports

asynchronous primitives, and this comparison has not been made in previous papers. This paper

provides a critical look at the utility of lightweight threads as applied to data parallel scienti�c

programming.

�Research supported by the National Aeronautics and Space Administration under NASA Contract No. NASA-

19480, while the authors were in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681.

i



1 Introduction

Threads provide a useful programming model for asynchronous behavior because of their ability

to encapsulate units of work that can then be scheduled for execution at runtime, based on the

dynamic state of a system. For example, the threaded model is used in the event-driven world of

network protocols, for client-server windowing applications, and for runtime systems implementing

fork semantics in task parallel programming languages [4, 11, 1]. The utility of threads in these

domains is in simplifying the complexities of asynchronous programming, and is well documented.

Recently, the threaded model has been applied to the domain of data parallel scienti�c codes [2,

6]. These initial reports indicate that the threaded model can produce performance gains over non-

threaded approaches, primarily through the use of overlapping computation with communication

latency. However, overlapping computation with communication is possible without the bene�t of

threads if the communication system supports asynchronous primitives [8], and this comparison has

not been made in previous papers. Overlapping computations with communication is asynchronous

programming, so the potential for threads to simplify this approach may be valid. To what extent,

then, are threads useful in the realm of data parallel scienti�c programming?

This paper provides a critical look at the utility of lightweight threads as applied to data

parallel scienti�c programming. We employ a lightweight thread package for distributed memory

multiprocessors, called Chant [5], to encode 2 data parallel scienti�c applications: a simple Jacobi

program written in Fortran and a particle-in-cell (PIC) simulation program written in C. We

compare the threaded performance of these applications with the non-threaded performance, and

discuss the implementation and \ease-of-programming" issues that arise. Our initial study indicates

that employing the threaded model in this domain raises several signi�cant programming challenges,

and the performance gained by overlapping computations with communications is often either

negated by the increased overhead of the threaded system or can be matched using non-threaded,

asynchronous programming techniques. However, there are indications that, as with the other

asynchronous programming domains, threads simplify the task of overlapping communications with

computations and provide simultaneous access to other bene�ts, such as load balancing capabilities.

In Section 2 we provide background information on the threaded programming model and its

application to data parallel programming. Section 3 then provides the details of the threaded

implementations of our applications, including performance results and analysis, and we conclude

with remarks on the potential bene�ts of threads for data parallel programming in Section 4.

2 Lightweight Threads

A thread, as commonly de�ned, is an independent, sequential unit of computation that executes

within the context of a kernel-supported entity, such as a Unix process. Threads are often clas-

si�ed by their \weight", which corresponds to the amount of context that must be saved when

a thread is removed from the processor, and restored when a thread is reinstated on a processor

(i.e. a context switch). Operating processes and threads are typically referred to as heavyweight

or middleweight because of their large context and the need to cross the kernel interface for all

operations. By exposing all context and thread operations at the user-level, a minimal context for

a particular application can be de�ned, and operations to manipulate threads may avoid crossing

the kernel boundary. As a result, user-level (lightweight) threads can be switched in the order of

1



tens of microseconds, which is at least an order of magnitude better than current operating system

processes and threads.

Threads are typically used for representing asynchronous computations within a single process,

since the scheduling is dynamic and can be in
uenced by the runtime conditions of a system.

Thus, threads are most useful when the scheduling of independent tasks is dependent on runtime

conditions, such as event-driven applications. For data parallel programming, threads are most

commonly used in two ways:

1. For latency tolerance. Accessing distant memories in a parallel computer (whether by message

passing or direct addressing) is typically a long-latency operation with respect to accessing

local memory. Often, there is an order of magnitude separating the access times for local and

remote memories. Therefore, it is highly desirable to either avoid or hide the latency of remote

memory references. The former is often accomplished by using intelligent partitioning and

caching techniques that eliminate the need to access a remote memory location. The latter is

accomplished by overlapping useful computation with communication, thereby \hiding" the

latency.

A threaded system overlaps computation with communication by creating multiple threads

on each processor (the actual number depends on the relative speeds of the underlying thread

and communication systems and on the remote access pattern of the application) and allows

a thread to run until a remote memory reference has been initiated, at which time it switches

to another ready thread rather than wait idle for the communication request to complete.

2. For resource management. For data parallel programming, the parallelism is obtained by

distributing the program data over a set of processors (memories), where each processor can

operate on its portion of the data independent of the others. It is often convenient to write

data parallel programs under the assumption that there are a large (or in�nite) number of

\virtual" processors available, so that the decision over distribution is controlled only by the

algorithmic constraints. However, this requires that the virtual processors be mapped onto

the physical processors at some point.

A threaded system can be used to implement virtual processors (VPs) [9], where each thread

implements a single VP. However, this is not a natural role for threads to play, as this

requires that each thread maintain its own address space, something typically not supported

by underlying thread packages. As a result, the programmer is forced to manually separate

global data structures into separate regions for each thread, which is di�cult to do for even

small programs.

For this paper we focus on the use of threads in data parallel programs, mainly for overlapping

computation with communication. It is also possible, however, to employ threads for other purposes,

such as task parallelism and load balancing, but these issues are beyond the scope of this paper.

2.1 Chant

In this section we outline the distributed threads pacakge, Chant, that is used for our experiments.

Though a detailed examination of distributed threads is beyond the scope of this paper, we will

2



Chant User Interface

Chant

Communication Library
(MPI, NX, ...)

Lightweight Thread Library
(Ports0 / Pthreads)

Chant System Interface (MPI, Pthreads)

Ropes

Remote thread operations

Remote service requests

Point-to-point message passing

Figure 1: Chant runtime layers and interfaces

nonetheless provide an introduction to Chant. Please refer to [5] for a more detailed description of

Chant and the issues faced in supporting distributed threads.

The POSIX committee has recently established a standard for the interface and functionality

of lightweight threads within an operating system process, called pthreads [7]. Since threads are

de�ned within the context of a process, they share a single address space, and communication

among threads is only de�ned in terms of shared memory primitives, such as events and locks.

Thus, the interaction of pthreads in a distributed environment is unde�ned. Likewise, the Message

Passing Interface Forum (MPI) has recently established a standard for communication between

processes [3]. Although various extensions to the standard have already been proposed [13, 14],

communication between lightweight threads within processes has yet to be supported by MPI.

Therefore, Chant was designed to provide a simple mechanism for combining lightweight threads

with interprocessor communication.

Chant is designed as a layered system (as shown in Figure 1), where e�cient point-to-point

communication provides the basis for implementing remote service requests and, in turn, remote

thread operations. Chant relies on a system interface to achieve a high degree of portability, where

the underlying thread and communication systems are ports0 (a subset of pthreads; see [12]) and

MPI, respectively.

Next, Chant supports point-to-point communication (i.e., send/recv) between any two threads

in the system by utilizing the underlying message passing system (MPI). Issues to be addressed at

this level include naming global threads in the system, avoiding intermediate copies for message

bu�ers, and e�cient polling for outstanding messages. Chant uses the concept of a context to

represent an addressing space within a processor, where contexts represent a linear ordering of

processes in the system as maintained by the underlying communication system (e.g., MPI uses

rank in MPI COMM WORLD). Global threads within Chant are therefore identi�ed using the doublet

<context id,thread id>.

Atop e�cient point-to-point message passing, Chant supports remote service requests by in-

stantiating, in each context, a service thread which is responsible for handling all incoming remote

service requests (asynchronous messages) and delivering any necessary replies. Using the remote

service request mechanism, Chant can easily support remote thread operations, such as remote

thread create, by invoking the speci�ed thread request on the desired processor and, possibly, by

adding some software \glue" to make it work.

3



Next, Chant supports collective operations among thread groups using a scoping mechanism

called ropes. Ropes allow a user to specify a collection of threads that will participate in a global,

collective operation such as a broadcast or barrier. Ropes also provide an alternate naming scheme

that allows all threads within the rope to be addressed using their relative index within the rope.

Finally, Chant provides a user interface that is an extension of the pthreads standard, where

access to each of the underlying layers can be made directly or indirectly. Thus it is still possible

to access the underlying MPI or pthreads interfaces from within a Chant thread.

3 Experiments

In this section we discuss two experiments used to evaluate the bene�ts of data parallel program-

ming using threads. The �rst experiment analyzes the Jacobi relaxation iterative method. The

second experiment deals with a particle-in-cell code, which is an irregular code. The threaded

versions are then compared against a conventional non-threaded programs employing communica-

tion/computation overlapping techniques based on asynchronous message passing primitives.

3.1 Jacobi

The Jacobi relaxation iterative method is used to approximate the solution of a partial di�erential

equation discretized on a grid. For this experiment we consider only the main Jacobi kernel routine

as shown below:

DO 10 Q=1,ITER

...

L: DO 20 J=2,N-1

DO 20 I=2,N-1

UHELP(I,J)=(1-OMEGA)*U(I,J)+OMEGA*0.25*

* (F(I,J)+U(I-1,J)+U(I+1,J)+U(I,J+1)+U(I,J-1))

20 CONTINUE

...

10 CONTINUE

Note that this code represents a regular Jacobi implementation, which means that each grid

element operation requires the same computational e�ort. Furthermore, for all experiments the

Jacobi kernel is placed within an outer loop over ITER iterations in order to obtain reasonably

large runtimes.

In order to evaluate the advantage of using threads for this kernel we manually encode three

di�erent data parallel versions using a column-wise distribution of the arrays UHELP, U , and F

on a Intel Paragon machine with 128 nodes:

� A blocking version which exchanges all data required to do local computations outside of

loops incorporating blocking receive operations.

� A hand overlapped version which statically overlaps computation with communication as may

be done by a data parallel compiler (c.f. Kali compiler [8]). First, all send operations are

done. Second, all the local loop iterations which do not require non-local data are processed.

Third, the corresponding receive operations are executed in blocking mode. Finally, all loop

iterations requiring non-local data are processed.

4



1 2 4 8 16
number of processors

0.0

2.0

4.0

6.0

8.0

se
cs

blocked
hand overlapped
threaded

Figure 2: Measured runtime for parallel regular Jacobi program versions with N=512, ITER=20,

B=1

� A virtual threaded version that creates three di�erent threads for each processor: two boundary

threads responsible for communicating with the other boundary threads and performing the

boundary iterations, and a computation thread responsible for performing all local iterations.

Each processor gets N�2

jP j
(where jP j divides N � 2) iterations of the J loop assigned. P

is the set of processors employed to execute the virtual threaded version. Each boundary

thread will perform B iterations, where 2 �B � N�2

jP j
. The computation thread will perform

N�2

jP j
� 2 �B iterations. By changing B we can control the work distribution among boundary

and computation threads within a speci�c processor. For our analysis both boundary threads

execute the same number (B) of threads. An experiment (see Figure 6) will be shown which

shows the e�ect of varying B. Every local processor of P respectively creates and terminates

its boundary and computation threads at the beginning and at the end of the program,

and the threads are free to execute simultaneously, as there is no dependence among them.

Threads within the same processor access shared memory in order to prevent intra-processor

communication with messages.

Figure 2 shows the runtimes for all three program versions based on a regular Jacobi implemen-

tation. We observe that the hand-overlapped and threaded versions are slightly better than the

blocked version due to their ability to overlap computation and communication, but that the di�er-

ence is nearly negligible. This is because the balanced computation and communication behavior

of a regular Jacobi version produces very even communication patterns in which all processors

exchange about the same amount of data at about the same time, and processors rarely wait long

for messages to be received. Also, since communication is rather small as compared with compu-

tation (problems of size N yield an O(N2) increase in computation as compared with an O(N)

increase of communication), e�ects of reducing communication costs are not dramatic. Finally, all

processors are responsible for the same amount of computation. Therefore, both computation and

5



0 1 2 3 4 5 6 7
process identifier

0.0

0.5

1.0

1.5

se
cs

blocked
hand overlapped
threaded

Figure 3: Workload of processors for parallel regular Jacobi program versions

0 1 2 3 4 5 6 7
process identifier

0.0

2.0

4.0

6.0

8.0

se
cs

blocked
hand overlapped
threaded

Figure 4: Workload of processors for parallel irregular Jacobi program versions

communication phases occur in concert. This explains a nearly linear speedup for smaller number

of processors.

Figure 3 displays the even workload across all processors of the three program versions analyzed.

The threaded version is slightly worse than the hand overlapped version due to its context switch

overhead, and the blocking version has the largest runtime due to the small waiting time induced

by blocking receive operations.

Figure 5 shows the runtimes for all three Jacobi versions, however this time we employ an

irregular workload. In this version, we put a di�erent load on a speci�c processor (in this case

processor 4). This conforms to some realistic situations in which di�erent relaxation algorithms are

applied depending on the location of each grid point. The runtime of the irregular code signi�cantly

increases due to the imbalanced load, and there is still no signi�cant di�erence among the overall

runtime of the three program versions. However, there is an important di�erence in the idle time

6



1 2 4 8 16
number of processors

0.0

10.0

20.0

30.0

40.0

50.0

se
cs

blocked
hand overlapped
threaded

Figure 5: Measured runtime for parallel irregular Jacobi program versions with N=512, ITER=20,

B=1

of the individual processors for the three methods.

Figure 4 depicts the runtime for each processor of an 8-processor Jacobi execution. It can

be clearly seen that processor 4 (due to the increased workload) dominates the runtime of the

entire program, and that all three program versions have a very similar runtime with respect to

processor 4 since each iteration is synchronized. However, the interesting aspect of this experiment

is that the threaded version implies a much smaller runtime for all other processors. The blocking

version requires each processor to wait for some data at the beginning of each kernel iteration. The

hand-overlapped version at one point of the execution also blocks for non-local data to be received.

In both of these versions all processors have to wait at a speci�c kernel iteration until processor

4 �nishes the previous iteration and sends its corresponding data. In contrast, the computation

thread of the threaded version never has to wait for any of its boundary threads to complete.

Communication and blocking time of the boundary threads is always overlapped by useful work to

be done by the computation thread. Only the boundary threads between neighboring processors

depend on each other. However, the computation thread of processor 4, which is responsible for

the majority of work, does not considerably slow down its boundary threads. Since the Paragon

thread scheduling strategy assigns equal time slots to each thread in a round-robin fashion, once

the boundary threads of processor 4 are done, all other processors but 4 are �nished too.

Finally, we want to investigate the e�ect of varying B, the number of iterations assigned to the

boundary threads. Note that the overall number of iterations assigned to the threads of a processor

(1 computation and 2 boundary threads) is �xed. By changing B, we control the work distribution

among the threads for each processor. Figure 6 displays the runtime of three di�erent threaded

regular Jacobi versions with varying values for N , ITER, and B. This experiment clearly shows

that modifying B does not change the overall runtime for any threaded regular Jacobi version.

7



0.0 10.0 20.0 30.0 40.0
B

0.0

10.0

20.0

30.0

se
cs

N=512; I=500
N=512; I=20
N=64; I=500

Figure 6: Threaded regular Jacobi version with 8 processors, 2 boundary and 1 computation thread

for various values of B

As we have noted above, the regular Jacobi version is highly balanced such that it seems to be

irrelevant how the loop iterations are distributed across the threads within one processor.

3.2 PIC

The Particle-in-Cell code (PIC) determines the motion of a group of interacting particles starting

with some initial con�guration of positions and velocities in a speci�ed volume of space. The

standard PIC version is an outer loop over time, with an inner loop alternating between two

computations:

1. update of positions and velocities from the dynamic equations (particle push phase)

2. compute the solution of electro-magnetic partial di�erential (�eld solution phase)

Lubeck and Faber [10] described a parallel implementation of PIC, where both the spatial grid

and the set of particles are regularly decomposed onto a set of processors. Each processor k keeps

track of three di�erent groups of particles:

� Particles which are owned by k and reside in its own region of the spatial grid,

� Particles which are owned by k and reside in some other processor's region of the spatial grid,

and

� Particles which reside in its region of the spatial grid and are owned by some other processor.

By keeping track of the particles in this manner, it is possible to reduce the volume of commu-

nication needed to locate particles at each time step, but only at the extra expense of maintaining

these groupings.

8



0 2 4 6 8
number of processors

0.0

5.0

10.0

15.0

20.0

se
cs

original
functional threaded
virtual threaded

Figure 7: Measured runtime for parallel PIC program with varying number of processors

For the purposes of our experiment, we evaluate three di�erent PIC versions written in C on a

network of Sun-10 workstations:

1. The original message passing version, derived from a code given to us by the University of

Colorado. This version has manually-overlapped computation and communication phases,

and the communication phases are highly sequential based on a single communication bu�er

that each processor maintains. During the particle push phase, each processor sends and

receives a set of particles to other processors, and these variable-sized messages are read into

a single, common bu�er on each processor. Since the messages are variable-sized, and a single

bu�er is being used, the communication cannot be parallelized.

2. The functional threaded version, which splits each PIC phase into three threads, corresponding

to sending, computing, and receiving. The PIC phases are executed sequential but the threads

within a phase are executed simultaneously. The threads are created and terminated outside

of the outer (time) loop and synchronized via mutex variables inside of the loop in order to

prevent excessive thread creation and termination overhead.

3. The virtual threaded version, which is identical to the original version except that a naive

partitioning scheme is employed to further sub-divide the spatial grid on each processor into

a number of virtual processors (threads).

Figure 7 plots the measured runtimes for three di�erent PIC versions, as described above, with

1024 particles and for varying number of processors. Each processor corresponds to a Sun-10

workstation in a workstation cluster. It can be clearly seen that the original version implies a

slowdown in performance due to the fact that the number of send/receive operations (cf. Figure 8)

for the original implementation is increasing linearly with the number of processors incorporated.

9



0 1 2 4 6 8
number of processors

0.0

10000.0

20000.0

30000.0

40000.0

nu
m

be
r 

of
 s

en
d/

re
ce

iv
es

 original
 functional threaded
 virtual threaded

Figure 8: Number of send/receive operations for parallel PIC program with varying number of

processors

Furthermore, the bookkeeping e�ort to maintain the particle groupings is signi�cant for larger

number of processors. Three tables, one for each class of particles as described above, need to be

updated and organized. Additionally, the particles may cluster in only a few regions, implying a

load imbalance of particles, consequently increasing both communication and bookkeeping e�orts.

Figure 7 also shows that the threaded PIC versions slightly decrease the performance as com-

pared to the original version. This is due to the fact that threads only improve execution speed if

they can overlap computation and communication beyond what is being done in the non-threaded

version. Since our original PIC code already overlapped computation with communication, the

threaded approach provided only overhead. The functional threaded version is slightly better than

the virtual threaded program because the former version is able to exploit both data and functional

parallelism, while the later version is restricted to data parallelism only.

In summary, we note that the original version manually overlapped computation with commu-

nication phases, thus exploiting the main performance bene�t of threads. Using threads, however,

o�ers advantages with respect to ease of synchronization. In the original version computation and

communication phases have to be synchronized manually, while the threaded versions only required

the de�nition of a set of threads, and the thread-scheduler automatically schedules those threads

ready to execute based on dynamic conditions. The underlying system automatically takes care of

scheduling the threads such that blocking time is overlapped with computation. On the other hand,

it is not trivial to detect functional parallelism for the functional threaded version, in particular in

the presence of a highly complex C program with many side-e�ects. We encountered two principal

problems for the virtual threaded version: First, it is necessary to manually separate the data of

a single processor into thread private and thread global data, where thread global data is shared

among all threads which reside in the same processor. Second, communication among threads on

the same processor could be done via message passing or shared memory access (thread global

10



data). In the �rst case, the underlying system automatically takes care of the communication

at the cost of additional message passing layer overhead. This overhead depends on whether the

underlying thread system recognizes that a communication occurs between two threads within the

same processor or the message is passed to the message passing layer (e.g. MPI layer), which in the

worst case might even try to send the message to the network. In the second case, shared memory

synchronization is inevitable.

4 Conclusion

The potential for lightweight threads to simplify asynchronous programming is realized in many

applications, such as event-driven simulations and client-server applications. The extend to which

they are useful in the realm of data parallel scienti�c programming is, however, still debated.

In this paper we illustrate the use of lightweight threads for two applications: a Jacobi relaxation

code and a particle-in-cell (PIC) code. Based on our experiments, we can make several observa-

tions. First, adding lightweight threads to a data parallel application must be done with care so

as not to disrupt the communication volume. As was demonstrated with the PIC code, adding

threads can sometimes increase the overall communication volume, degrading the performance of

an application. Second, employing lightweight threads for overlapping computations and commu-

nication is sometimes not possible, and sometimes not necessary. Again referring the PIC code,

if the communication phase is written to be sequential, then employing multiple threads yields no

bene�t since the threads will be serialized by the sequential communication operations. Also, if the

overlap is trivial (such as in Jacobi), then it is possible to encode the asynchronous communication

without threads. However, as we see in the Jacobi experiment, threads free resources that are

otherwise busy, providing the potential for load balancing to improve the execution or for running

threads from another job. Third, implementing \virtual processors" using threads is possible but

not well-supported, since threads assume a single addressing space within the same process, while

virtual processors require separate address spaces. If this type of addressing is not supported by the

underlying threads package (as is often the case), then the programmer must provide the support,

which is di�cult and slow.

In summary, we observe that lightweight threads do have utility in the domain of data parallel

programming, but not to the extent as reported in previous papers when hand-overlapped commu-

nication is factored in. Also, the utility of threads is not necessarily in the increased performance

of an application, but in the simpli�cation of asynchronous programming and the ability to release

idle resources for other work. While we do not attempt to provide the �nal word on the utility

of lightweight threads for data parallel programming, we do hope to add fuel to the �re for this

ongoing debate.

References

[1] Henri E. Bal, M. Frans Kaashoek, and Andrew S. Tanenbaum. Orca: A language for parallel

programming of distributed systems. IEEE Transactions on Software Engineering, 18(3):190{

205, March 1992.

11



[2] Edward W. Felton and Dylan McNamee. Improving the performance of message-passing ap-

plications by multithreading. In Proceedings of the Scalable High Performance Computing

Conference, pages 84{89, April 1992.

[3] Message Passing Interface Forum. Document for a Standard Message Passing Interface, draft

edition, November 1993.

[4] I. T. Foster and K. M. Chandy. Fortran M: A language for modular parallel programming.

Technical Report MCS-P327-0992 Revision 1, Mathematics and Computer Science Division,

Argonne National Laboratory, June 1993.

[5] Matthew Haines, David Cronk, and Piyush Mehrotra. On the design of Chant: A talking

threads package. In Proceedings of Supercomputing 94, pages 350{359, Washington, D.C.,

November 1994. Also appears as ICASE Technical Report 94-25.

[6] J. Holm, A. Lain, and P. Banerjee. Compilation of scienti�c programs into multithreaded

and message driven computation. In Proceedings of the Scalable High Performance Computing

Conference, pages 518{525, Knoxville, TN, May 1994.

[7] IEEE. Threads Extension for Portable Operating Systems (Draft 7), February 1992.

[8] C. Koelbel and P. Mehrotra. Compiling global name-space parallel loops for distributed exe-

cution. IEEE Transactions on Parallel and Distributed Systems, 2(4):440{451, October 1991.

[9] Ravi Konuru, Jeremy Casas, Robert Prouty, Steve Otto, and Jonathan Walpole. A user-level

process package for PVM. In Proceedings of Scalable High Performance Computing Conference,

1994.

[10] O.M. Lubeck and V. Faber. Modeling the performance of hypercubes: A case study using the

particle-in-cell application. Parallel Computing, 9(1):37{52, December 1988.

[11] Piyush Mehrotra and Matthew Haines. An overview of the Opus language and runtime sys-

tem. In Proceedings of the 7th Annual Workshop on Languages and Compilers for Parallel

Computers, New York, November 1994. Also Appears as ICASE Technical Report 94-39.

[12] Portable runtime systems (ports) consortium.

http://www.cs.uoregon.edu:80/paracomp/ports/.

[13] Anthony Skjellum, Nathan E. Doss, and Kishore Viswanathan. Inter-communicator extensions

to MPI in the MPIX (MPI eXtension) library. Technical report, Computer Science Department

and NSF Engineering Research Center, Mississippi State University, July 1994. Submitted to

ICAE Journal Special Issue on Distributed Computing.

[14] Anthony Skjellum, Nathan E. Doss, Kishore Viswanathan, Aswini Chowdappa, and Pu-

rushotham V. Bangalore. Extending the message passing interface (MPI). Technical report,

Computer Science Department and NSF Engineering Research Center, Mississippi State Uni-

versity, 1994.

12


